
Continuously Managing Microservice Granularity: An
Evidence-Based Industrial Approach

Yan Justino
CESAR SCHOOL
Recife, Brazil

contact@yanjustino.com

Carlos Eduardo da Silva
Sheffield Hallam University

Sheffield, UK
C.DaSilva@shu.ac.uk

Rafael Batista Duarte
CESAR SCHOOL
Recife, Brazil

rbd@cesar.school

ABSTRACT
Defining and managing appropriate service granularity remains a
recurring challenge in the design and evolution of microservices-
based systems, directly affecting modularity, maintenance, and op-
erational efficiency. This paper presents early empirical evidence
supporting Granulify, a continuous granularity-management ap-
proach that dynamically adjusts service boundaries throughout the
system lifecycle. Although still preliminary, the results already point
to tangible benefits in modularity, maintainability, and operational
cost, underscoring the method’s industrial applicability. The pro-
posal is being validated through the reengineering of a real-world
investment management platform from a major financial institu-
tion in Brazil.The analysed platformmanages over 40million trans-
actionsmonthly and supportsmore than 250K internal users across
investment, compliance, and trading domains. Preliminary results
indicate patterns of architectural fragmentation, productivity im-
pacts, and signs of granularity saturation. We believe that continu-
ous application of this approach will contribute to more informed
architectural decisions, balancing modularity, maintenance effort,
and operational costs. This ongoing research aims to consolidate
Granulify as a practical solution to support teams in the evolution-
ary management of granularity in microservices architectures.

KEYWORDS
Microservices, Service Granularity, Continuous Architecture, Soft-
ware Maintenance, Software Evolution, Case Study, Granularity
Management Approach

1 Introduction
Accurately establishing the size and scope of a microservice has
been widely recognised as one of the main software engineering
challenges faced by development teams. Several studies highlight
the complexity involved in this decision, which directly impacts as-
pects such as modularity, performance, maintenance, and the evo-
lution of microservice-based systems [3, 5, 7, 12, 15, 17, 20, 22, 24,
27, 28, 30].

This decision is fundamental to the software modelling process,
as an inadequate definition of granularity may result in the exces-
sive creation of components and automation mechanisms. Such a
scenario tends to intensify challenges such as increased cost and
operational complexity, the need for greater coordination effort
for functionality testing, the emergence of communication failures
and inconsistencies, as well as a high frequency of maintenance ac-
tivities focused on compatibility with technologies and implemen-
tation platforms [2, 4].

In this context, this paper joins other academic reports that high-
light the inherent challenges in the process of migrating systems

to a microservices architecture. To this end, this study presents
an approach for the continuous management of granularity in dis-
tributed systems. The proposal allows for dynamic adjustments
throughout the application lifecycle, incorporating progressivemod-
ularisation and architectural adaptation.

This approach has been iteratively developed and refined through
practical application in a real-world scenario involving the migra-
tion of a large investment platform in the Brazilian financial sector.
In this context, the absence of mechanisms for revisiting service
granularity over time has negatively affected maintenance and op-
erational efficiency.

The central contribution of this article lies in the definition and
application of a specific set of metrics to support the continuous
management of granularity, and in the introduction of the Granu-
larity Saturation Method, which helps in the assessment of the
saturation level in the microservice granularity. We define “granu-
larity saturation” as the point at which further splitting a system
into services or modules no longer delivers net benefits, because
the added coordination and complexity costs outweigh the gains
in isolation.

The focus of this study lies in the formulation of the metrics
and the empirical analysis of their practical application. For that
we have applied our proposed metrics in a real industrial case, per-
forming an analysis of a real system evolution of a period of two
years, and demonstrated how our approach supports decisionmak-
ing in granularity management.

The remainder of this paper is organised as follows. Section 2
presents the fundamental concepts and related work on microser-
vice granularity. Section 3 describes the context of the case study
used to conduct this research. In Section 4, we detail the process of
extracting the Granulify approach from the case study, followed by
Section 5, which discusses the main results and analyses. Finally,
Section 6 presents the conclusions and directions for future work.

2 Related Work
This section presents the essential concepts that underpin the pro-
posal of this work, focusing on the relationship between microser-
vice granularity and its impacts on the evolution of distributed sys-
tems, while discussing the current gap in support for continuous
granularity management. The definition of granularity in its clas-
sical conception is related to the level of detail or abstraction of a
software component, reflecting the size, functional scope, and de-
gree of coupling between system units [18, 21].

In the context of microservice-based architectures, Vera-Rivera
et al. [26] propose a specialisation of this concept by stating that
defining the granularity of a system means correctly identifying

SBES’25, September 22–26, 2025, Recife, PE Justino et al.

the boundaries of each service. However, choosing the appropri-
ate level of granularity is recognised in the literature as one of the
greatest challenges in the design and evolution of microservice-
based systems [15, 20, 26]. This is because, while finer-grained ser-
vices may increase modularity and scalability, they also introduce
additional challenges such as architectural complexity, increased
communication, and operational costs [15, 20].

These adverse effects mark the point of granularity saturation.
Furthermore, the overhead associated with the coordination and
orchestration of multiple fine-grained services can negatively im-
pact both performance and the productivity of development teams.
In this sense, the definition of granularity depends on multiple fac-
tors, such as: Domain boundaries (Domain-Driven Design) [2, 27];
Systemmaintainability and evolvability [3, 22]; Operational infras-
tructure cost [14, 26]; and Service independence flexibility [15].

Recent research highlights that granularity should not be treated
as a one-time, immutable decision, but rather as a dimension that
can and should be dynamically adjusted throughout the applica-
tion lifecycle [4, 5, 8, 22]. In practice, selecting the appropriate
level of granularity involves several trade-offs [7, 8, 15, 16]. For in-
stance, while finer granularity enables selective scalability, it often
increases orchestration and operational costs. Similarly, smaller
and more modular services improve isolated development and de-
ployment, yet require greater coordination among teams and com-
ponents. Additionally, although modularity supports separation of
concerns, the resulting distribution of logic may hinder system-
level understanding and maintainability.

It is important to emphasise that there is no single “ideal” met-
ric for evaluating granularity. The choice of metrics depends on
the goals of the evaluation, the type of system, and the quality at-
tributes that are consideredmost important [8]. Furthermore, Vera-
Rivera et al. [26] and Hassan et al. [15] suggest that analysing
the historical evolution of the system can reveal important pat-
terns to guide decisions about granularity (re)adjustments. To sup-
port the management and monitoring of granularity in microser-
vice systems, several studies propose the use of structural and pro-
cess metrics such as size metrics (of software and teams), distribu-
tion, coupling, cohesion, complexity, maintainability, and perfor-
mance [15, 22, 26].

In this study, these metrics are examined in relation to three
key trade-offs commonly observed in service granularity decisions:
scalability vs. costs, modularity vs. coordination effort, and modu-
larity vs. maintainability. These trade-offs informed the selection
and refinement of the metric set employed, aiming to ensure align-
ment with practical challenges in system evolution. A compara-
tive analysis between existing metrics and those introduced in this
work is presented in Section 4, justifying the adjustments made to
better capture granularity saturation over time.

According to Hassan et al. [14], the state of the art in scalabil-
ity evaluation when reasoning about granularity adaptation is of-
ten ad hoc. Supporting this view, recent literature highlights the
need for models that enable continuous granularity management
throughout system evolution [8, 26, 30]. This management aims to
identify when a system is: Undermodularised (insufficient gran-
ularity); Overmodularised (excessive granularity); or Saturated
(inefficient or ineffective growth).

Approaches and tools that incorporate monitoring and adapta-
tion of granularity, such as the one described in this work, are
considered a current gap in the literature [15, 26], especially in
the practical application of systematic methods to support contin-
uous architectural decision-making. Recent studies have addressed
the challenges related to decomposing monolithic systems into mi-
croservice architectures. These investigations reveal a gap in sup-
port for continuous granularity management, especially in indus-
trial environments.

Becker and Lucrédio [3] investigated the impact of adopting
microservices in the evolution of a Software Product Line (SPL),
highlighting the effects of poorly defined granularity on product
maintenance and evolution. Hassan et al. [15] conducted a system-
atic mapping study showing that the problem of granularity defini-
tion is among the most critical in architectural transitions, but few
studies propose approaches for its management over time. Bogner
et al. [5] analysed industrial practices related to the evolvability of
microservice-based systems, concluding that the absence of met-
rics and methods for continuous granularity monitoring under-
mines the sustainable evolution capability of applications. Vera-
Rivera et al. [26], in turn, conducted a literature review focused on
methods for defining and measuring service granularity, but also
identified the limitation of most studies in treating granularity as
a static decision.

Complementing these analyses, Taibi and Lenarduzzi [22] dis-
cussed the so-calledmicroservice bad smells, highlighting how poor
granularity decisions negatively impact system maintenance and
operation. Although they address recurring problems in practice,
these studies do not present systematic solutions for continuous
granularitymanagement throughout the system lifecycle.Thework
of Vural and Koyuncu [27] explores the use of Domain-Driven De-
sign (DDD) to support the initial definition of granularity, propos-
ing that domain boundaries serve as natural guides for modularisa-
tion. Despite the usefulness of DDD, the authors acknowledge that
organisational and business changes may require dynamic granu-
larity revisions, reinforcing the need for adaptive approaches.

By proposing a structured and iterative approach, thiswork seeks
to fill this gap by supporting continuous granularity management,
integrating quantitative metrics and qualitative analyses based on
real system evolution data.

3 The Case Study
In order to understand the impacts of granularity on the evolution
of systems based onmicroservice architecture, this case study anal-
yses a modernisation project of a large-scale investment manage-
ment platform from one of the largest private financial institutions
in Brazil. The platform operates at significant scale, managing over
40 million transactions monthly and supporting more than 250,000
internal users across investment, compliance, and trading domains.
Its selection was due to its relevance to the fields of monolithic-to-
microservices architecture migration and microservice granular-
ity. Additionally, its modular structure and the need to adapt to
increasing scalability demands make it a representative example
of the real challenges of modern software engineering.

Originally designed to support a limited daily transaction load,
the institution’s Asset Management System evolved over time to

Continuously Managing Microservice Granularity SBES’25, September 22–26, 2025, Recife, PE

meet growing demands in the investment sector. Initially mono-
lithic, the system’s architecture was gradually fragmented to ad-
dress requirements for scalability, improvedmaintainability, greater
robustness, and increased business alignment. Between January
2023 and January 2025, a new phase of migration was conducted
to further advance the modernisation of the system.

The team observed in this case study was responsible for migrat-
ing three critical business capabilities: Financial Instrument Man-
agement, Trade PositionManagement, and Investment Portfolio Man-
agement 1. As a strategy, the team chose to segment the monolithic
system into parts that were easier to understand and maintain,
adopting a microservice-based architecture design and implemen-
tation.

Throughout this process, the team faced the reality that there
are few established patterns to guide the definition of how gran-
ular a microservice should be. In this context, the modernisation
effort encountered challenges related to productivity and opera-
tional costs, making its trajectory particularly relevant to the dis-
cussion on continuous granularity management in microservice-
based architectures. Based on this, the main contribution of this
work is the definition of an approach focused on continuous gran-
ularity, identified over recent years during the migration of mono-
lithic systems to microservices.

In the following section, we detail how this case study, com-
bined with a set of prior experiences, served as the basis for ex-
tracting the proposed approach.

4 Granulify Extraction
Granulify is an approach currently under development in the con-
text of industry-applied research, aiming to support systems in
evolving dynamically along the granularity spectrum. In Subsec-
tion 4.1, the core principles and structuring mechanisms of the
approach are presented. Subsection 4.2 describes the associated
metrics and evaluation criteria. The following subsections (4.3, 4.4,
and 4.5) detail the procedures adopted during the initial stages of
development and validation. Given that this research is still on-
going, only the early phases of the method are presented in this
paper.

4.1 Principles and Processes
TheGranulify approach integrates principles of distributed design,
iterative refinement, and metric-based evaluation to support archi-
tectural decisions related to service granularity. Its design explic-
itly considers the trade-offs involved in these decisions, balancing
the pursuit of modularity, scalability, and maintainability with the
associated coordination overhead, operational costs, and increased
system complexity. By aligning metric interpretation with these
opposing forces, the approach aims to assist teams in making more
informed and context-sensitive granularity adjustments through-
out the system lifecycle. Its core principles are:

i Granularity as a dynamic spectrum: granularity is not a
fixed point but a continuum that can be adjusted over time.
It should be revisited regularly to ensure alignmentwith sys-
tem and business needs.

1The original business capabilities were renamed using terms from the BIAN model
(Banking Industry Architecture Network) - bian.org

ii Continuous review: granularity should be constantlymon-
itored and adapted to balance modularity, performance, and
management complexity, taking into account changes in tech-
nical and organisational demands.

iii Trade-offs betweenflexibility and control: the choice of
granularity involves compromises between scalability, op-
erational cost, and governance, requiring iterative adjust-
ments throughout the application lifecycle.

iv Domain orientation and functional decomposition: do-
mains and subdomains define natural boundaries for mod-
ularisation, but these boundaries should be periodically re-
assessed to avoid unnecessary coupling or excessive frag-
mentation.

Additionally, Granulify provides an iterative granularity adjustment
process consisting of the following steps: 1. Initial Mapping, to
diagnose the current granularity; 2. Metrics Collection, to com-
pile logs, quantitative metrics (coupling, LOC, frequent changes,
etc.), and team feedback; 3. Granularity Definition, to evaluate
trade-offs and determine whether a service should be more gran-
ular (splitting) or less granular (merging); 4. Implementation, to
perform refactorings and adjust granularity as needed; and finally;
5. Monitoring and Adaptation, to detect granularity saturation
and conduct periodic reviews; 6. Iterative Adjustment, which in-
tegrates feedback loops from previous steps to re-initiate the cycle
when evolving conditions or new evidence indicate the need for
further refinement. Figure 1 illustrates the flow of this process.

1. Initial
Mapping

2. Metrics
Collection

3. Granularity
Definition

4. Implementation

5. Monitoring
and Adaptation

6. Iterative
Adjustment

Figure 1: Granulify – Continuous Granularity Management
Process

4.2 Metrics and Evaluation Criteria
The selection of metrics and evaluation criteria used in Granulify
was based on two pillars: (i) adherence to best practices and em-
pirical evidence found in the literature on microservices, granu-
larity, and software maintenance, and (ii) availability and feasibil-
ity of data collection in the real context of the evaluated platform.
Additionally, the definition of the metrics used in this study was
guided by their direct alignment with the strategic objectives of

SBES’25, September 22–26, 2025, Recife, PE Justino et al.

the case study organisation, which establishes explicit goals re-
lated to the quality, efficiency, speed, and competitiveness of tech-
nological solutions—aligning with pillars such as resilience, finan-
cial efficiency, and delivery acceleration. The granularity, effort,
change, complexity, and operational cost metrics adopted by Gran-
ulify directly reflect indicators that support the achievement of
these strategic goals.

For example, reducing delivery time (Lead Time), improving pro-
ductivity (throughput), optimising costs, and architectural resilience
are corporate objectives that are intrinsically related to granularity
decisions and the system’s ability to adapt sustainably over time.
In this context, the proposed model was developed to support the
generation of insights and guide architectural adaptations in line
with the organisation’s modernisation and technological efficiency
plans. To this end, a set of metrics was selected to quantitatively
reflect these dimensions, enabling the observation of the relation-
ship between granularity and architectural evolution throughout
the system lifecycle. In addition to conventional metrics, two new
aggregate indicators were proposed — the Relative Variation Index
(RVI) and the Elasticity (ℰ) — aiming to capture dynamic patterns
of growth, stability, or decline in granularity over time.

The RVI enables the quantification of weighted relative varia-
tions across different dimensions (granularity, process, operation,
code, and financial), while ℰ measures the sensitivity of these vari-
ations in relation to changes in the number of microservices. To-
gether, RVI and ℰ compose the Granularity Saturation Index (GSI),
which serves as a composite instrument for classifying granularity
evolution into zones (high, reduced, saturated, or adverse), indicat-
ing whether architectural changes lead to improvement, stagna-
tion, or degradation.

Table 1 summarises the metrics and indices employed, their ob-
jectives, and how they relate to the aspects under investigation. For
organisational clarity, these indicators are grouped into five main
dimensions: (i) Size and granularity, which tracks the total num-
ber of microservices and their fragmentation (NMS, TMS); (ii) De-
velopment effort, encompassing team effort and task-execution
efficiency (TMB, EST, ACT, EFT); (iii) Operation, assessing stabil-
ity and change intensity (NCH, FCH); (iv) Code, reflecting struc-
tural complexity and software quality (LOC, CYC, COV); and (v)
Financial, evaluating infrastructure costs (CST). Continuousmon-
itoring of these dimensions over time makes it possible to detect
saturation signals and potential imbalances in architectural evolu-
tion.

4.3 Initial Mapping
The goal of this step is to understand the current state of gran-
ularity in the system. To that end, we aim to identify the existing
level of granularity and potential points for optimisation. Addition-
ally, the goal is to assess the degree of modularity within the sys-
tem’s architecture. The outcome of this step should be an initial
diagnostic of the system’s granularity. To support this step, we de-
veloped an artefact called the Granularity Classification Spec-
trum (GCS).

Unlike studies that cast granularity as a simple “monolith vs.
microservices” dichotomy [1, 4, 15, 25], the GCS arranges archi-
tectural styles on a single continuum of deployment scope and
business responsibility. At the coarsest extreme, the granularity

Table 1: Classification of Granularity Metrics and Indices

Base Metrics
Metric Rationale Source

NMS
Number of active microservices; directly
expresses the architectural granularity
level.

[6, 26]

TMS

Total count of microservices (including
internal fragmentations); indicates struc-
tural complexity and fragmentation.

[1]

TMB
Team members allocated to evolution
tasks; captures the human factor related
to adapting to a given granularity.

[26]

EST

Median estimated effort for completed
tasks; evaluates teams’ predictive capa-
bility with respect to adopted granular-
ity.

[15, 30]

ACT
Median actual effort for completed tasks;
measures the direct productivity impact
of granularity.

[3, 30]

EFT
Effort factor (𝐴𝐶𝑇/𝐸𝑆𝑇); gauges plan-
ning efficiency relative to actual effort re-
quired.

[3, 30]

NCH
Total number of significant code
changes; reflects maintenance volume
and intensity attributable to granularity.

[8]

FCH
Average change frequency per service;
indicates architectural stability and cohe-
sion.

[8, 30]

LOC
Total lines of code across microservices;
captures overall system size and code
complexity.

[6, 8]

CYC
Mean cyclomatic complexity of services;
acts as a proxy for internal modularity
and structural complexity.

[6]

COV
Percentage of code covered by auto-
mated tests; indicates testability and
safety in the face of changes.

[15, 22]

CST
Total operational and infrastructure cost
(in thousands USD); enables financial-
impact analysis related to granularity.

[14]

Granularity Saturation Index (GSI)
Metric Rationale Source

RVI
Weighted Relative Variation Index aggre-
gating key metrics; measures system in-
stability or maturity trends over time.

Proposed

ℰ
Elasticity: sensitivity of 𝑅𝑉 𝐼 to variation
in𝑁𝑀𝑆; classifies granularity behaviour
into high, reduced, saturated or adverse
zones.

Proposed

integrators—Monolith,ModularMonolith, and Service-BasedArchitecture—
consolidate multiple business capabilities into one deployable arte-
fact.

Continuously Managing Microservice Granularity SBES’25, September 22–26, 2025, Recife, PE

Figure 2: Granularity Classification Spectrum (GCS): from Monolith to Nanoservice

As functional decomposition deepens, a systemprogresses through
three microservice sub-classes: Extended (one business capability),
Intermediate (a cohesive cluster of related functionalities), and Fo-
cused (a single functionality). This progressive refinement of ser-
vice boundaries ultimately culminates in theNanoservice or Function-
as-a-Service (FaaS) tier, where each short-lived, event-triggered unit
encapsulates a lone business function.

By replacing the binary view with this richer vocabulary, the
GCS supports continuous analysis of how varying granularity lev-
els affect modularity, modifiability, and software evolution; cru-
cially, the term nanoservice denotes only the finest granularity and
is not inherently an anti-pattern—its [23, 27] suitability depends
on context-specific cost-benefit trade-offs. Furthermore, the model
highlights two processes: theGranularityDisintegrator, which frag-
ments services to increase modularity, and the Granularity Integra-
tor, which consolidates services to adjust granularity as needed [10].
Figure 2 presents this visual classification model, representing the
transition between different granularity levels in distributed sys-
tems. Table 2 details these levels and their respective classification
criteria.

As a practical example, consider the business capability Trade
PositionManagement, responsible for handling asset-trading po-
sitions. In the originalmonolithic system, this functionality resided
in a component that bundled several investment-management ca-
pabilities. Using theGranularity Classification Spectrum (GCS) and
the criteria in Table 2, the initial mapping showed that the capabil-
ity had been refined architecturally and decomposed into fifteen
separate components.Their distribution across the spectrum is pre-
sented in Table 3.

This diagnostic process was conducted collaboratively among
architects, software engineers, and technical leaders involved in

the platform modernisation, ensuring that the classifications re-
flected both the technical structure and the business domain or-
ganisation.

4.4 Metrics Collection
The collection of metrics used in the case study was carried out
systematically from various organisational sources.TheNumber of
MSA was obtained through version control systems and the Con-
figuration Management Database (CMDB), considering the count
of active microservices deployed each quarter. The total number
of microservices (TMS), in turn, represented the sum of all ser-
vices, including internal fragmentations associated with architec-
tural evolution.

Estimated effort (EST) was extracted from the agile project man-
agement platform, which integrates issue tracking, sprint planning,
and estimation features. The values were based on the average ef-
fort estimations provided by development teams for both imple-
mentation andmaintenance tasks. Actual effort (ACT)was obtained
from task tracking logs within the same platform, reflecting the
actual time recorded for task execution. Based on these data, the
effort factor (EFT) was calculated as the ratio between actual and
estimated effort (ACT/EST), and used to assess planning accuracy
in light of the complexity imposed by service granularity.

Maintenance-related metrics were collected directly from code
repositories. The number of changes (NCH) corresponds to the
count of significant commits or code alterations recorded each quar-
ter, while the frequency of change (FCH) represents the average
number of changes per service, reflecting the stability and cohe-
sion of the architecture. Code structural metrics were obtained us-
ing static analysis tools. Lines of code (LOC) were captured auto-
matically by these tools, while cyclomatic complexity (CYC) was

SBES’25, September 22–26, 2025, Recife, PE Justino et al.

Table 2: Granularity levels grouped into Monolith, Service,
Microservice and NanoService categories.

Level Rationale Source
MONOLITH

Monolithic Single application that consolidates
multiple business capabilities; in-
ternal modularity may range from
nonexistent to high.

[3, 7, 8,
28]

Modular
Monolith

Single deployable application with
cohesive internal modules and ex-
plicit boundaries; low coupling be-
tween modules, though without in-
dependent deployment.

[3, 7, 8,
28]

SERVICE
Service-
Based

Broad services representing multi-
ple business capabilities; grouped
by high-level domains yet still
tightly coupled and with low sepa-
ration of concerns.

[9, 11, 19,
23]

MICROSERVICE
Extended Services organised by individual

business capabilities; low internal
granularity and few external inte-
gration points.

[4, 25]

Intermediate Services encapsulating cohesive
functional subsets; own interfaces
and data but retaining significant
internal dependencies.

[3, 13, 17]

Focused Services centred on specific iso-
lated functionalities; strong con-
text isolation with explicit inter-
service communication.

[3, 8]

NANOSERVICE
FaaS Independent decoupled functions

executed on demand; maximum
granularity, very high fragmenta-
tion, and strong dependency on
serverless platforms.

[7, 29]

computed as the average cyclomatic complexity of the services,
indicating the typical structural complexity observed across the
system. Test coverage (COV), expressed as a percentage, was cal-
culated from reports generated by CI/CD pipelines, indicating the
system’s degree of testability.

Finally, infrastructure cost (CST) was obtained from corporate
infrastructure cost monitoring dashboards, reflecting the total cost
of running and maintaining services in production. All metrics
were collected quarterly throughout the analysed period, ensuring

Table 3: Granularity levels, styles, and investment services
components.

Level Components
Very Low Modular Monolith

1. Portfolio Management

Low Service-Based
1. Client Investment Services

Medium Extended Microservice
1. Transaction Logging;
2. Asset Registration Management

High Intermediate Microservice
1. Position Aggregation

Very High Focused Microservice
1. Position Maintenance;
2. Investor Profile Management

Extremely High Functions as a Service (FaaS)
1. Position Event Consumer ;
2. Position Event Publisher ;
3. Asset Validation Service;
4. Investor Data Enrichment;
5. Position Workflow Orchestrator ;
6. Portfolio Risk Evaluation;
7. Compliance Rule Validator ;
8. Market Data Synchronisation

comparability and visibility of architectural evolution in regular
cycles. Table 4 consolidates this data.

In the context of this investigation, no significant operational
overhead was observed when enabling continuous metric collec-
tion.The partner institution already had both an observability stack
and historically structured data pipelines, eliminating the need for
additional hardware or licensing investments. The only incremen-
tal cost identified amounted to approximately 24 hours of work per
quarter by a senior engineer — allocated to selecting the relevant
time-series, exporting snapshots, and normalising the data used in
this analysis.

The quarterly evolution analysis of the system revealed the di-
rect impact of increasing granularity across different technical and
organisational dimensions. Table 4 presents an overview of the
variation in key metrics from 23Q2 to 24Q4. In the Granularity di-
mension, the number of activemicroservices (NMS) increased from
7 in 23Q2 to 10 in 24Q4, while the total number of services (TMS),
including fragmentations and internal subdivisions, grew from 15
to 71. This significant growth reveals a progressive decomposition
strategy aligned with modularity and component autonomy goals.

Continuously Managing Microservice Granularity SBES’25, September 22–26, 2025, Recife, PE

Table 4: Quarterly Evolution of Metrics by Dimension (Granularity, Development Effort, Operation, Code, Financial)

Quarter Granularity Development Effort Operation Code Financial
- NMS TMS TMB EST ACT EFT NCH FCH LOC CYC COV (%) CST (k$)

23Q2 07 15 14 10 30 3.00 87 0.98 100 10 80 18
23Q3 15 30 12 15 34 2.28 183 2.03 110 18 89 20
23Q4 08 38 11 10 29 2.90 118 1.31 130 18 89 85
24Q1 08 42 12 05 13 2.80 143 1.58 151 19 90 115
24Q2 08 50 13 10 18 1.80 108 1.20 172 19 89 170
24Q3 11 61 13 10 17 1.70 107 1.18 210 21 88 175
24Q4 10 71 13 10 20 2.00 201 2.23 279 22 87 155

In the Process dimension, a nonlinear pattern was observed in
team productivity.The average number of teammembers per quar-
ter (TMB) remained relatively stable, varying between 11 and 14.
However, estimated effort (EST) and actual effort (ACT) showed
notable fluctuations. In 23Q2, the median actual effort exceeded
the estimate threefold (EFT = 3.00), indicating initial difficulties in
team adaptation to the new architectural model. From 24Q2 on-
ward, the Effort Factor stabilised (EFT ≈ 1.7–2.0), suggesting that
teams began operating with greater predictability amid increas-
ing granularity. Although an EFT value of 1 represents the ideal
scenario—indicating perfect alignment between estimated and ac-
tual effort—values in the observed range can still reflect a reason-
able level of planning accuracy, particularly in complex and evolv-
ing architectures.

Regarding Operation, the number of changes (NCH) increased
steadily, peaking at 201 changes in 24Q4.The frequency of changes
per service (FCH), which started at 0.98, surpassed 2.23 by the
end of the period. This pattern indicates greater maintenance dy-
namism, possibly linked to fine-grained adjustments in more spe-
cialised services. The Code dimension also showed clear impacts.
Lines of code (LOC) more than doubled, rising from 100k to 279k
lines over the analysed period. Cyclomatic complexity (CYC) fol-
lowed a similar trend, indicating a growth in logical density. Test
coverage (COV), although remaining relatively high, showed amod-
est decline—from 90% to 87%—which, when considered alongside
the growth in service fragmentation and complexity, may reflect
increasing demands on automated testing practices.

Finally, the Financial dimension showed a sharp rise in opera-
tional costs (CST), fromUSD 18k in 23Q2 to USD 155k in 24Q4.This
increase is associated with higher computational resource usage,
infrastructure complexity, and orchestration of highly fragmented
services.

4.5 Indices to Support Granularity Definition
To identify growth patterns as well as the degree of system stabil-
isation or degradation, a method called the Granularity Saturation
Method was developed. Its purpose is to evaluate whether the anal-
ysed indicators suggest a saturation level in the microservice gran-
ularity. The diagram (Figure 3) provides a view of the traceability
between raw data and the final indicator, showing the calculation
process of the Total Relative Variation Index (𝑅𝑉 𝐼𝑇𝑂𝑇) and the
Granularity Saturation Elasticity (ℰ).

To measure temporal changes in software quality, we define the
Relative Variation Index (RVI), a composite metric that synthesises

fluctuations across multiple software engineering dimensions. The
calculation begins at the metric level, where the relative variation
of metric 𝑗 at quarter 𝑖 is given by:

𝛾𝑗𝑖 =
𝑥𝑗𝑖 − 𝑥𝑗𝑖−1
𝑥𝑗𝑖−1 + 𝜖 (1)

where 𝑥𝑗𝑖 is the value of metric 𝑗 in quarter 𝑖, and 𝜖 is a small
constant to prevent division by zero. This index 𝛾𝑗𝑖 expresses the
normalised variation between two consecutive quarters. Table 5
shows the computed values of 𝛾𝑗𝑖 for a representative set of metrics
grouped across five semantic dimensions: Granularity (TMS), De-
velopment Effort (TMB, EFT), Operation (FCH), Code (LOC, CYC,
COV), and Financial (CST).

Table 5: Metric-level relative variation (𝛾𝑗𝑖) per quarter and
assigned weights (𝑤𝑗)

Q TMS TMB EFT FCH LOC CYC COV CST
23Q2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23Q3 1.00 -0.24 -0.14 1.07 0.10 0.80 -0.11 0.11
23Q4 0.26 0.27 -0.08 -0.35 0.18 0.00 -0.00 3.25
24Q1 0.10 -0.03 0.09 0.20 0.16 0.05 -0.01 0.35
24Q2 0.19 -0.35 0.08 -0.24 0.13 0.00 0.01 0.47
24Q3 0.22 -0.05 0.00 -0.01 0.22 0.10 0.01 0.02
24Q4 0.16 0.17 0.00 0.88 0.32 0.04 0.01 -0.11
wj 1 1 1 1 1 1 -1 1

Each metric is associated with a directional weight (𝑤𝑗), indi-
cating whether an increase represents a positive or negative im-
pact. For instance, test coverage (COV) receives a negative weight
(𝑤COV = −1) because increases in coverage are beneficial, while
increases in most other metrics imply greater effort, complexity, or
cost. To compute the dimension-level variation index for each quar-
ter 𝑖, we aggregate the weighted variations of all metrics 𝑗 within
the same semantic dimension 𝑑 , normalised by the total absolute
weight:

𝑅𝑉 𝐼𝑑,𝑖 =
∑𝑗∈𝑑 (𝛾𝑗𝑖 ⋅ 𝑤𝑗)
∑𝑗∈𝑑 |𝑤𝑗 |

(2)

Finally, the Total Relative Variation Index for quarter 𝑖 is defined
as the sum of all partial indices:

𝑅𝑉 𝐼TOT,𝑖 = ∑
𝑑
𝑅𝑉 𝐼𝑑,𝑖 (3)

Table 6 presents the dimension-level and total RVI values for
each quarter, alongside the number of active microservices (MSA)

SBES’25, September 22–26, 2025, Recife, PE Justino et al.

Variation Indices
𝛾𝑗𝑖

𝛾
𝑇𝑀𝑆

𝛾
𝑇𝑀𝐵,𝐸𝐹𝑇

𝛾
𝐹𝐶𝐻

𝛾
𝐿𝑂𝐶,𝐶𝑌𝐶,𝐶𝑂𝑉

𝛾
𝐶𝑆𝑇

𝑅𝑉 𝐼𝑑
Develop. Effort

𝑅𝑉 𝐼𝑑
granularity

𝑅𝑉 𝐼𝑑
operation

𝑅𝑉 𝐼𝑑
code

𝑅𝑉 𝐼𝑑
financial

(𝑅𝑉 𝐼TOT, ℰ)
elasticity

Figure 3: Granularity Saturation Method

and an auxiliarymetricℰ, used for exploratory interpretation.These
values provide a temporal perspective on how architectural char-
acteristics evolved, particularly in relation to the increasing frag-
mentation observed through the number of microservices.

Table 6: Relative Variation Index (RVI) per dimension and
quarter, including microservice count (MSA)

𝑅𝑉 𝐼
Q MSA GRA EFT OPE COD FIN TOT ℰ

23Q2 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23Q3 30 0.17 -0.06 0.18 0.13 0.02 0.43 0.72
23Q4 38 0.04 0.03 -0.06 0.03 0.54 0.59 1.32

system in production
24Q1 42 0.02 0.01 0.03 0.03 0.06 0.15 -13.37
24Q2 50 0.03 -0.05 -0.04 0.03 0.08 0.05 -6.38
24Q3 61 0.04 -0.01 -0.00 0.06 0.00 0.09 2.64
24Q4 71 0.03 0.03 0.15 0.06 -0.02 0.25 7.06

MSA = Number of microservices; GRA = Granularity; EFT = Development
Effort; OPE = Operation; COD = Code; FIN = Financial; TOT = Total

These data points suggest that RVI can be used to capture phases
of architectural transition. In early quarters, high variation reflects
structural change and system realignment. To further explore this
relationship, Figure 4 plots a polynomial regression between the
number of microservices (MSA) and the total RVI (TOT).While the
visual trend may suggest inflection points in architectural satura-
tion or recovery, such interpretations should be approached with
caution. The aim of this graph is not to prescribe an ideal number
of microservices, but to support exploratory analysis of how varia-
tion behaves as fragmentation increases. More robust conclusions
would require broader empirical validation.

To formalise this observation, we introduce the Granularity
Saturation Elasticity (ℰ), a metric that captures the sensitivity of
relative variation growth with respect to the growth in microser-
vice count. Conceptually, this elasticity quantifies whether archi-
tectural variation is growing proportionally, slower, or faster than
the system’s fragmentation. The elasticity is computed as the ratio
between the logarithmic growth rates of total variation (𝑅𝑉 𝐼𝑖) and

Figure 4: Polynomial regression between MSA and RVI TOT

microservice count (𝑀𝑆𝐴𝑖) over time:

ℰ𝑖 =
Δ ln(𝑅𝑉 𝐼𝑖)
Δ ln(𝑀𝑆𝐴𝑖)

= ln(𝑅𝑉 𝐼𝑖 + 𝜖) − ln(𝑅𝑉 𝐼𝑖−1 + 𝜖)
ln(𝑀𝑆𝐴𝑖 + 𝜖) − ln(𝑀𝑆𝐴𝑖−1 + 𝜖) (4)

This formulation helps identify distinct behavioural zones:
i HighVariationZone (ℰ > 1): Indicates simultaneous growth
acrossmultiple dimensions (effort, complexity, change, cost),
usually associated with increased architectural instability
and overhead.

ii Reduced Variation Zone (0 < ℰ < 1): Reflects deceler-
ating variation, suggesting the system may be approaching
structural balance.

iii Saturation Zone (ℰ ≈ 0): Reveals a point at which frag-
mentation continues to grow, but without additional sys-
temic variation, indicating stabilisation.

iv Adverse Effect Zone (ℰ < 0): Suggests that increased gran-
ularity is degrading software quality or maintainability, pos-
sibly requiring architectural intervention.

This section has focused primarily on defining and detailing the
indices used to support decision-making regarding microservice

Continuously Managing Microservice Granularity SBES’25, September 22–26, 2025, Recife, PE

granularity. The presented indices, particularly the Relative Vari-
ation Index (RVI) and Granularity Saturation Elasticity (ℰ), pro-
vide a robust quantitative foundation for assessing architectural
trends and identifying critical saturation points in service gran-
ularity. However, it is important to emphasise that the practical
procedures for applying these indices in making effective granu-
larity adjustment decisions require further elaboration. In future
publications, we plan to comprehensively detail this step of the
Granulify process, explicitly addressing activities, qualitative cri-
teria, and the decision-making workflow involved in continuous
granularity definition and management.

5 Evaluation
This section presents the empirical evaluation of the proposed gran-
ularity management metrics in the context of a real-world case
study.The goal is to investigate the extent to which the introduced
indicators—Total Relative Variation Index (𝑅𝑉 𝐼) and Saturation Elas-
ticity (ℰ)—are able to capture architectural shifts, granularity trends,
and indicators of saturation over time.Thesemetrics are interpreted
in light of the trade-offs identified earlier, particularly those con-
cerningmodularity, coordination effort, andmaintainability.Where
appropriate, existing structural metrics from the literature are ref-
erenced to contrast their coverage and sensitivity in relation to the
proposed indicators.

5.1 Exploratory Growth (23Q2–23Q4)
In the first two analysed quarters, the system showed consistent
variation across metrics, with the 𝑅𝑉 𝐼 increasing from 0.00 (23Q2)
to 0.43 (23Q3) and 0.59 (23Q4), accompanied by an increase in gran-
ularity elasticity, which reached ℰ = 1.32. These values charac-
terise theHigh Variation Zone, indicating a phase of accelerated
growth in granularity, effort, changes, and complexity.

This period corresponds to the initial migration phase (23Q2
- 23Q4), during which the system had not yet been deployed in
a production environment. The technical team chose to adopt a
highly granular approach with strong use of serverless functions
(FaaS), aiming to maximise component independence and enable
more agile event orchestration. This decision was based on load
simulations and assumptions about future needs for scalability and
resilience.

The observedmetrics faithfully reflect this strategy: the increase
in the total number of services (from 15 to 38) and structural com-
plexity, without perceptible penalties in productivity or stability,
suggests that the extreme granularity model was, at that time, com-
patible with the exploratory stage of the project. The empirical val-
idation of themetrics at this stage demonstrates that the transition-
ing architecture was alignedwith the designed technical objectives
— even though these decisions had not yet been tested in a real op-
erational environment.

5.2 Production Impact (24Q1)
From quarter 24Q1 onward, a critical inflection point in the sys-
tem’s behaviour is observed. Although the total number of mi-
croservices increased from 38 to 42, granularity elasticity plum-
meted to ℰ = −13.37, signalling that structural growth no longer
translated into organisational or technical benefits. This scenario

fits within the Adverse Effect Zone, suggesting that continued
fragmentation began to compromise system productivity and sta-
bility.

This quarter marks the beginning of operation in a real pro-
duction environment. The introduction of actual load, business de-
mands, and operational incidents revealed the practical limits of
the extremely granular architecture conceived up to that point.The
metrics accurately reflect this transition: the FCH increased signif-
icantly, indicating instability, and operational costs surged, reflect-
ing orchestration overhead and high consumption of computing
resources. Moreover, several bugs were recorded, along with mul-
tiple redeployment cycles — a clear sign that, although theoreti-
cally well-planned, the structure was not resilient to operational
challenges.

In this context, themetrics demonstrated their utility as diagnos-
tic instruments: by highlighting deterioration in key aspects (EFT,
FCH, CST), they signalled the inadequacy of the current architec-
ture and prompted critical reflection within the team. The data not
only corroborated the qualitative perceptions of the engineers in-
volved, but also grounded internal discussions about the need to
reassess the chosen granularity level.

5.3 Architectural Reassessment (24Q2)
In the following quarter (24Q2), elasticity remained negative (ℰ =
−6.38) and the relative variation index remained low (𝑅𝑉 𝐼 = 0.05),
indicating persistent adverse effects. This period was marked by a
strategic repositioning: explicitly recognising the negative impacts
of excessive fragmentation — such as maintenance difficulties, re-
curring production failures, and rising costs — the team began a
deliberate restructuring effort.

Services with low autonomy or high functional coupling, whose
maintenance demanded disproportionate effort, were identified. In
response, the organisation started consolidating suchmicroservices
and deactivating redundant or underutilised instances, reorienting
the system toward a more sustainable granularity.

This decision represents a turning point in architectural gover-
nance and reinforces the practical value of metrics in supporting
decision-making. In retrospect, it can be said that the indicators
faithfully captured the mismatch between the planned architec-
ture and operational reality, functioning as tools for continuous
feedback.

5.4 Recovery and Alignment (24Q3–24Q4)
This architectural consolidation marked a paradigm shift: the strat-
egy moved from pursuing maximum granularity — guided by prin-
ciples of functional independence and scalability — to a more prag-
matic approach, centred on the idea of sustainable granularity.The
effectiveness of this shift began to appear in the data in quarter
24Q3, when elasticity returned to a positive value (ℰ = 2.64), once
again placing the system in the High Variation Zone.

This recovery suggests a possible correlation between the granu-
larity adjustments and initial improvements observed in productiv-
ity, stability, and efficiency — although these relationships require
further validation. In the subsequent quarter (24Q4), this trend so-
lidifies: elasticity reached ℰ = 7.06 and the 𝑅𝑉 𝐼 rose to 0.25. These
values indicate that the interventions — such as integrating tightly

SBES’25, September 22–26, 2025, Recife, PE Justino et al.

coupled services and removing redundant components— produced
perceptible structural effects.

Improvements in metrics, especially in change frequency, team
effort, and operational costs, point to a realignment between ar-
chitectural decisions and the organisation’s strategic goals. In this
case, the metrics not only reflect the system’s state but also feed
back into the decision-making process, serving as continuous in-
struments of technical governance.

5.5 Insights and Metric Comparison
Compared to existing structural metrics commonly found in the lit-
erature — such as service count, coupling, cohesion, and complex-
ity— the proposed indicators offer amore integrative and temporal
perspective. Traditional metrics tend to provide static snapshots of
system structure, whereas the Total Relative Variation Index (𝑅𝑉 𝐼)
captures the cumulative rate of architectural changes over time,
reflecting the pace and intensity of structural evolution.

Similarly, the Saturation Elasticity (ℰ) incorporates variation lim-
its and growth dynamics to identify potential saturation points, a
scenario not addressed by conventional metrics. Together, these in-
dicators extend current metric-based approaches by emphasising
system dynamics, enabling a more proactive strategy for granular-
ity management aligned with architectural stability and maintain-
ability concerns.

The patterns observed over time strengthen the central hypoth-
esis of this study: the absence of systematic mechanisms for con-
tinuous granularity management can lead distributed systems into
stages of stagnation, saturation, or even operational regression. On
the other hand, adopting an evidence-based and iterative model
— as proposed by the Granulify — enables dynamic monitoring
and adjustment of granularity levels, balancing modularity, per-
formance, and operational cost.

The application of Granulify in this case study demonstrated its
practical utility: empirical data collected over seven quarters en-
abled the identification of different zones of structural behaviour
and the connection of those zones to real events and decisions
within the organisation. As such, the proposed approach proves
to be a promising tool to support architectural decision-making,
contributing to more adaptive and metrics-driven governance in
system modernisation contexts.

In the next phases of this research, the approach will be ex-
panded and validated in new domains and projects within the or-
ganisation, aiming to consolidate its large-scale applicability and
assess its contribution to the evolutionary sustainability ofmicroser-
vice architectures.

6 Conclusion
This study analysed the impact of granularity on the evolution of
a microservice-based system within the real-world context of a fi-
nancial institution. Through the proposal and application of the
Granulify, it was possible to demonstrate the need for contin-
uous granularity management throughout the system’s lifecycle,
enabling iterative adjustments based on metrics and quantitative
indicators.

The results indicated that architectural fragmentation, although
essential formodularisation and scalability, initially led to increased

unpredictability in effort and change frequency. Over time, a sta-
bilisation trend was observed, suggesting that teams and processes
progressively adapted to the new architectural reality.

The approach also enabled the identification of signs of granu-
larity saturation, reinforcing that architectural evolutionmust con-
sider not only technical aspects, but also organisational and oper-
ational constraints.

6.1 Study Limitations
This study presents some limitations. First, it was conducted in a
single organisational context, which may restrict the generalisabil-
ity of the results. Furthermore, the approach has not yet been val-
idated across multiple teams or different domains, a gap that will
be addressed in the next phases of the research. For these reasons,
the findings should be regarded as indicative evidence whose gen-
eralisability hinges on replications across multiple domains and or-
ganisations. Another limitation concerns the nature of the metrics
used, which, although widely recognised in the literature, may not
fully capture qualitative aspects such as the subjective experience
of teams or organisational factors that are not directly measurable.

6.2 Future Work
The next stages of this research include replicating Granulify in
other industrial scenarios, focusing on different domains and or-
ganisations. Plans also include enhancing the indicators used, in-
corporating architectural quality metrics and dependency analy-
sis. Another relevant aspect will be the investigation of the im-
pacts of continuous granularity management on the governance
of distributed systems and the organisational processes that sup-
port their evolution.

We expect this work to not only deepen the understanding of
how granularity affects the evolution of microservice-based sys-
tems but also to foster the development of more robust and adapt-
able methods for architectural management in contemporary soft-
ware engineering.

Additionally, future work will explore the qualitative aspects
of granularity management by conducting interviews and surveys
with software teams.The goal is to understand how factors such as
team satisfaction, ownership clarity, and organisational culture in-
fluence and are influenced by granularity decisions. These insights
will complement the technical indicators, offering a more holistic
view of continuous granularity management.

ARTIFACT AVAILABILITY
Thedata and artifacts used in this study originate from a real-world
investment management platform of a major financial institution
in Brazil. Due to strict confidentiality agreements and internal com-
pliance policies, the raw data and system artifacts cannot be pub-
licly shared. However, they are available for the review process
under a non-disclosure basis if required.

ACKNOWLEDGMENTS
For the purpose of open access, the author has applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission.

Continuously Managing Microservice Granularity SBES’25, September 22–26, 2025, Recife, PE

REFERENCES
[1] Yalemisew Abgaz, Andrew McCarren, Peter Elger, David Solan, Neil Lapuz,

Marin Bivol, Glenn Jackson, Murat Yilmaz, Jim Buckley, and Paul Clarke. 2023.
Decomposition of Monolith Applications Into Microservices Architectures: A
Systematic Review. IEEE Transactions on Software Engineering 49, 8 (Aug. 2023),
4213–4242. doi:10.1109/tse.2023.3287297

[2] Mehdi Ait SAID, Abdellah EZZATI, Soukaina MIHI, and Lahcen BELOUAD-
DANE. 2024. Microservices Adoption: An Industrial Inquiry into Factors Influ-
encing Decisions and Implementation Strategies. International Journal of Com-
puting and Digital Systems 15, 1 (March 2024), 1417–1432. doi:10.12785/ijcds/
1501100

[3] Alex Malmann Becker and Daniel Lucrédio. 2020. The Impact of Microservices
on the Evolution of a Software Product Line. In Proceedings of the 14th Brazil-
ian Symposium on Software Components, Architectures, and Reuse (SBCARS ’20).
ACM. doi:10.1145/3425269.3425275

[4] Shanay Behrad, David Espes, Philippe Bertin, and Cao-Thanh Phan. 2021. Im-
pacts of Service Decomposition Models on Security Attributes: A Case Study
with 5G Network Repository Function. In 2021 IEEE 7th International Confer-
ence on Network Softwarization (NetSoft). IEEE. doi:10.1109/netsoft51509.2021.
9492620

[5] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. 2021.
Industry practices and challenges for the evolvability assurance ofmicroservices:
An interview study and systematic grey literature review. Empirical Software
Engineering 26, 5 (July 2021). doi:10.1007/s10664-021-09999-9

[6] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019. On the impact of
service-oriented patterns on software evolvability: a controlled experiment and
metric-based analysis. PeerJ Computer Science 5 (Aug. 2019), e213. doi:10.7717/
peerj-cs.213

[7] Thelma Colanzi, Aline Amaral, Wesley Assunção, Arthur Zavadski, Douglas
Tanno, Alessandro Garcia, and Carlos Lucena. 2021. Are we speaking the indus-
try language? The practice and literature of modernizing legacy systems with
microservices. In 15th Brazilian Symposium on Software Components, Architec-
tures, and Reuse (SBCARS ’21). ACM. doi:10.1145/3483899.3483904

[8] Famke Driessen, Luís Ferreira Pires, João Luiz Rebelo Moreira, Paul Verhoeven,
and Sander van den Bosch. 2024. A Quantitative Assessment Method for Mi-
croservices Granularity to Improve Maintainability. In Enterprise Design, Op-
erations, and Computing. EDOC 2023 Workshops, Tiago Prince Sales, Sybren
de Kinderen, Henderik A. Proper, Luise Pufahl, Dimka Karastoyanova, and
Marten van Sinderen (Eds.). Springer Nature Switzerland, Cham, 211–226. https:
//doi.org/10.1007/978-3-031-54712-6_13

[9] Thomas Erl. 2017. Service-oriented architecture (second edition ed.). Prentice
Hall, Upper Saddle River, NJ. Includes index.

[10] Neal Ford. 2021. Software architecture (first edition ed.). The MIT Press, Cam-
bridge, Massachusetts. Made available through: Safari, an O’Reilly Media Com-
pany.

[11] Neal Ford. 2023. Building evolutionary architectures (second edition ed.). O’Reilly,
Beijing.

[12] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019.
Microservices Migration in Industry: Intentions, Strategies, and Challenges. In
2019 IEEE International Conference on Software Maintenance and Evolution (IC-
SME). IEEE. doi:10.1109/icsme.2019.00081

[13] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. 2019.
From Monolith to Microservices: A Classification of Refactoring Approaches.
Springer International Publishing, 128–141. doi:10.1007/978-3-030-06019-0_10

[14] Sara Hassan, Rami Bahsoon, and Rajkumar Buyya. 2022. Systematic scalability
analysis for microservices granularity adaptation design decisions. Software:
Practice and Experience 52, 6 (Jan. 2022), 1378–1401. doi:10.1002/spe.3069

[15] Sara Hassan, Rami Bahsoon, and Rick Kazman. 2020. Microservice transition
and its granularity problem: A systematic mapping study. Software: Practice and
Experience 50, 9 (June 2020), 1651–1681. doi:10.1002/spe.2869

[16] Munezero Immaculée Josélyne, Doreen Tuheirwe-Mukasa, Benjamin Kanagwa,
and Joseph Balikuddembe. 2018. Partitioning microservices: a domain engineer-
ing approach. In Proceedings of the 2018 International Conference on Software En-
gineering in Africa (ICSE ’18). ACM. doi:10.1145/3195528.3195535

[17] Luís Nunes, Nuno Santos, and António Rito Silva. 2019. From a Monolith to a Mi-
croservices Architecture: An Approach Based on Transactional Contexts. Springer
International Publishing, 37–52. doi:10.1007/978-3-030-29983-5_3

[18] D. L. Parnas. 1972. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. doi:10.1145/361598.
361623

[19] Mark Richards. 2015. Microservices vs. service-oriented architecture. O’Reilly
Media.

[20] Sh. Salii, J. Ajdari, and Xh. Zenuni. 2023. Migrating to a microservice architec-
ture: benefits and challenges. In 2023 46th MIPRO ICT and Electronics Convention
(MIPRO). IEEE. doi:10.23919/mipro57284.2023.10159894

[21] Mary Shaw and David Garlan. 1996. Software architecture. Prentice Hall, Upper
Saddle River, NJ. Literaturverz. S. 227 - 237.

[22] Davide Taibi and Valentina Lenarduzzi. 2018. On the Definition of Microservice
Bad Smells. IEEE Software 35, 3 (May 2018), 56–62. doi:10.1109/ms.2018.2141031

[23] Rafik Tighilt, Manel Abdellatif, Imen Trabelsi, Loïc Madern, Naouel Moha, and
Yann-Gaël Guéhéneuc. 2023. On the maintenance support for microservice-
based systems through the specification and the detection of microservice an-
tipatterns. Journal of Systems and Software 204 (Oct. 2023), 111755. doi:10.1016/
j.jss.2023.111755

[24] Mathawee Tusjunt and Wiwat Vatanawood. 2018. Refactoring Orchestrated
Web Services into Microservices Using Decomposition Pattern. In 2018 IEEE
4th International Conference on Computer and Communications (ICCC). IEEE.
doi:10.1109/compcomm.2018.8781036

[25] Victor Velepucha and Pamela Flores. 2023. A Survey on Microservices Archi-
tecture: Principles, Patterns and Migration Challenges. IEEE Access 11 (2023),
88339–88358. doi:10.1109/access.2023.3305687

[26] Fredy H. Vera-Rivera, Carlos Gaona, and Hernán Astudillo. 2021. Defining and
measuring microservice granularity—a literature overview. PeerJ Computer Sci-
ence 7 (Sept. 2021), e695. doi:10.7717/peerj-cs.695

[27] Hulya Vural and Murat Koyuncu. 2021. Does Domain-Driven Design Lead to
Finding the Optimal Modularity of a Microservice? IEEE Access 9 (2021), 32721–
32733. doi:10.1109/access.2021.3060895

[28] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and Gastón
Márquez. 2021. Design, monitoring, and testing of microservices systems: The
practitioners’ perspective. Journal of Systems and Software 182 (Dec. 2021),
111061. doi:10.1016/j.jss.2021.111061

[29] Yang Zhao, Ran Mo, Yao Zhang, Siyuan Zhang, and Pu Xiong. 2022. Exploring
and understanding cross-service code clones inmicroservice projects. In Proceed-
ings of the 30th IEEE/ACM International Conference on Program Comprehension
(ICPC ’22). ACM. doi:10.1145/3524610.3527925

[30] Xin Zhou, Shanshan Li, Lingli Cao, He Zhang, Zijia Jia, Chenxing Zhong, Zhihao
Shan, and Muhammad Ali Babar. 2023. Revisiting the practices and pains of
microservice architecture in reality: An industrial inquiry. Journal of Systems
and Software 195 (Jan. 2023), 111521. doi:10.1016/j.jss.2022.111521

https://doi.org/10.1109/tse.2023.3287297
https://doi.org/10.12785/ijcds/1501100
https://doi.org/10.12785/ijcds/1501100
https://doi.org/10.1145/3425269.3425275
https://doi.org/10.1109/netsoft51509.2021.9492620
https://doi.org/10.1109/netsoft51509.2021.9492620
https://doi.org/10.1007/s10664-021-09999-9
https://doi.org/10.7717/peerj-cs.213
https://doi.org/10.7717/peerj-cs.213
https://doi.org/10.1145/3483899.3483904
https://doi.org/10.1007/978-3-031-54712-6_13
https://doi.org/10.1007/978-3-031-54712-6_13
https://doi.org/10.1109/icsme.2019.00081
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1002/spe.3069
https://doi.org/10.1002/spe.2869
https://doi.org/10.1145/3195528.3195535
https://doi.org/10.1007/978-3-030-29983-5_3
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.23919/mipro57284.2023.10159894
https://doi.org/10.1109/ms.2018.2141031
https://doi.org/10.1016/j.jss.2023.111755
https://doi.org/10.1016/j.jss.2023.111755
https://doi.org/10.1109/compcomm.2018.8781036
https://doi.org/10.1109/access.2023.3305687
https://doi.org/10.7717/peerj-cs.695
https://doi.org/10.1109/access.2021.3060895
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1145/3524610.3527925
https://doi.org/10.1016/j.jss.2022.111521

	ABSTRACT
	1 Introduction
	2 Related Work
	3 The Case Study
	4 Granulify Extraction
	4.1 Principles and Processes
	4.2 Metrics and Evaluation Criteria
	4.3 Initial Mapping
	4.4 Metrics Collection
	4.5 Indices to Support Granularity Definition

	5 Evaluation
	5.1 Exploratory Growth (23Q2–23Q4)
	5.2 Production Impact (24Q1)
	5.3 Architectural Reassessment (24Q2)
	5.4 Recovery and Alignment (24Q3–24Q4)
	5.5 Insights and Metric Comparison

	6 Conclusion
	6.1 Study Limitations
	6.2 Future Work

	REFERENCES

